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i r Summary .

A In two new formulations of Fybrid/Mixed finite
element methods respactively by the Hellinger-Reiscner !

"|principle and the Hu-Washizy principle, the strezs equis

librium equations are brought in as conditions of con-
straint through the introduction of additional 1nterna1£
displacement parameters. The new approaches are more f
flexible and have better computing efficiencies. A4 3
procedure for the choice of assumed stress terms for |
]3-0 s0lids is suggested. Example salutions are giveni
ifor plates and shells using the present formulaticns |
and the idea of semiloof elements.

Fint o elehent'methods can be considered as con-
wenient rethods for s0lving partia? differential equa-
tions. In the case of solid mechanics the most common
. ‘formulation is to use displacements as field variables
in the differentia) equations. The so-called conven- i
itional finite element formulation is an approximate
solution based on assumed dispiacements and the corres-’
ponding variationa) principle is the principle of the f
stationary potential energy. Such method ecan thus, §
be called o Primal Finite Elenent Method. For solte |
mechanics problems a cual formulation can be made using'
stress functions as field variables and the correspon- ;
ding complementary energy principle. Applications of
" isuch principle for the finite element method have been |
- imade, but'are not popular. |
At a rather ea:ly age of finite element develop- f
" {ment, short-cenings of the assumed displacement method :
lwere discovered. The main one 1s the difficulty 1n t
constructing shape functions for thin plates and shells:
which require C' continuity-conditions: Other obsérva-g
tions are that the so-called compatible elements are
too rigid and, fndeed, for some limiting cases, such as'
nearly incompressible materials or thin plates and” :
shells which are formulated by taking transverse shear-'
ing stra‘ns into account, the corresponding finite ele-
‘ment model may be completely locked. Another area that
icalls for improvement is to avoid the loss in accuracy
when the evaluation of strains and hence stresses are
dccomplished by differentiation of the assumed
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displacements, ‘
Many alternative finite element methods that have
been developed are bared on the introduction of addi-
tione! field variables. Within the element more than
jone field variable can be introduced such as methods
iderived by the Hellinger-Reissner principle for which .
!stresse§ and displacements are used and methods derived:
by the Hu-Washizy principle for which stresses, strains.
iand displacements are used. Such models are named ‘
yMixed models, | When additiona1‘v§riables are introducedi
‘as Lagrange multipliers for the maintaining continuity
'conditions along he interelemens bouncary it is la-
belled as a hybrid mode]. These two mocde!s are not
mutually exclusive and in many cases the same finite
element method can be cerived using different_varie-
ticnal formulations. It is, thus, decided tha\ & dis-
cussicn o1 non-primal finite element metnod be Yumped
5toge:her under the name Hybrid/Mixed finite element
irethod, !
1 The assumed stress hybrid method which makes use
iof boundary displacements as a¢ditional variables, and
ihence leads to matrix displacement methods in the fi-
jnite element formulation, can overcome the shortcomings?
;of the assumed displacemen: methoes that were menticned:
?above. However it also needs further improvements., L
:The main ones are (1) the lack of & guideline for the
tchoice of the assumed stress terms, (2) the excessive
rcomputing time needed {n the fnversion of a flexibility’
:matrix during the process of constructing the element °
stiffness matrix and (3) the difficulty in the choice
i0f equilibrating stresses in the case of complex prob-
!lems such as shells,
| . The objectives of the present lecture are:

i{1) To present two recently developed Hybrid/Mixed
finite element formulations based, respectively on the
tHellinger-Refssner principle and the Hu-Washisy princie
.Ple for which stress equilibrium conditions need not be}
;imposed Inftially but are brought in as conditions of
constraint, instead, by fncluding additional fnternal
-disblacement parameters, These new approaches make the ¢
'formu1ation more flexible and also improve the comput.
ing efficiency. f

(2) To prescnt a systematic procedure for the choice
of the asiu~sd strece borme thae wiyy
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'‘prevent the appearnace of kinematic deformation modes.
Three dimensfonal elements are used as examples,
'(3) To present some results on plates and shalls using

.

2_ Hybrid/Mixed Formylation by Hellinger-Reissner
~ Principle

Element stiffness matrix can be constructed using
different variational methods. The initia) step in com=
mon is to assign nodal disp1acements q and correspon-
ding boundary displacement u which mainta1n compatihili-
ty with neighboring e1ements. Then ty using any varia-
tional principle in solid mechanics @ solution for such
**la problem with preseribed boundary conditions can be
. lobtained. Such solutions may be in terms of displace-
iments, stresses and/or strains. The element strain
?energy U can thus be expressed in terms of the nodal
xdisp!acements Q, and the element stiffness matrix k can
be obtained. {

+In using the Hellinger-Reissner principle to
solve the above boundary value problem, the following
functional should be maintained stationary,

CREASE L ERE U INEY
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-t Tw-3)ds ().
_fwhere S s the elastic compliance matrix and ‘
2 '
1= ()
g :relates the boundary tractions and the stresses. Here‘

the element displacements are assumed to be, in general,

not compatible with the prescribed boundary displace-

‘ment d. If the element displacements u are compatible
iwith U, and there is no constraint for the assumed

_stressas o then the resulting element is identical to

- ithe compatible element, as was pointed out by Fraeijs

) :de Veubeke.3 If o satisfy the homogeneous equilibrium,
‘equations

(3)

; {Then the second term in Eq. (1) can be changed to the

: «boundary integral, resulting in

-

(@'

[
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This {is the negative of the element complementary ener-
gy end {s the basis for the initial development of the
assumed _tress hybrid element,% which may be consi-
dered as the result of a hybrid variational princip?e.s
This also indicates that if the assumed stresses g in
€q. (1) satisfy Eq. (3) and u = U the resulting element
‘$tiffness matrix by a mixed variational principle s
{drntical to that bv a hybrid variational principle.

]

... Jresent approaches and the idea of semiLoof elements.l/®

Then &n = 0 yfelds g in terms of q.

iditions kq.

*

With stresses expressed in terms of stress parame- o .

ters £, - 3
o=Pg 8) | .'?

and the element displacements v or boundary displace-~ i .

ments U {nterpolated in terms of nodal displacements g, %

1.0, S
Uo E ‘6) .
urlg (7)

then m. s -mp w5 BHE - 86 g (8) !

where H = 6 QT§ P dv (9} :

and Gy PNV by m (o)

s s PV by T m)
vTT " 1

{
The resulting ele-
ment stiffness matrix obtained from the strain energy
expression 1s f

(12)

in a new formulation, the stress equilibrium con-

(3) are not satisfied but the element dis-

placements y are expressed fn terms of nodal displace- ;

ments q and additional internal displacement parameters

A, tee. }
U= ygtUym Ng+ My

k=glg

(13)

Here ug are compatible with the boundary displace- -
ments g but y, are introduced so that u are no longer
compatible. By integrating the term with ux and by
recoenizing that

g =y~ Q on 3V

one obtains from Eq. (1)

e fldeiet Ry - @l ule (0
1f Y, are bubble functions, i.e. u, along the
element boundary are zero, then ¥ -ur=0and the above
equation sti1l holds, It is seen that the last term in
Eq (2)containg the stress equilibrium condition with Uy
‘as Lagrange multipliers. Thus, in finite element for-
mulation the stresses need not satisfy the equilibrium

‘condition initially while the introduction of the ine

ternal displacements Y will enforce this condition.
With o, 5‘ and u, represented by Eqs. (5) and (13},

T T

Ttz 8He+ gty gR) (15) 3
where H and G are given in Eqs. (9) and (10) and 3
Re 6 (ng)Tg dv (e

1

The stationary condition of mp then yields
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B . H 3l (G q - R ) ' (17 are coupled in the stress-strain relation {¢ {s only
) C necescary to use the same stress expansion for the
1 normal components.
R'g» 0 (18) ' N
.~ ' ‘ The present formulation by using additional e
Eliminating A and substituting § into the strain energy interna) displacement parameters is a more deneral way [
expression one obtains 7 to introduce the stress cquilibrium conditiens, For il
; exampl2, the stress terms may be expanded in terms of
k= §T§'1§ . 575'15 (575’15)'1 §T§'1§ (19) nature) coordinates such as isoparametric coordinates

for quadrilateral and hexahedral elements and area and jﬁ%
volume coordinates for triangles and tetrahedrons. ]
Alsc, a 'imited number of additional terms may be used.:.:
In these cases the stress equilibrium equations are .

., satisfied approximately but the formulation of the
problem is simplified., It should be remarked that in
the fermulation by the Hellinger-Reissner principle

~ the equilibrium conditions need not be satisfied for
the assumed stresses.

Equation (18) is, of course, the equilibrium constraint |
for the stress parameters 8. When problems are set up
ﬂn terms of Cartesian coordinates, such constraint equa-
Fions can be identified directly. .For thin plates and
shells for which compatible shape functions are diffi-
cult to construct, n. of Eq. (4) is used by the exist- '
4ng hybrid stress method. Tong has suggested the use
of uncoupled stresses while adding a constraint term
§T5 A to Eq. (4).6 The corresponding variational func- ?
tional may be written as . 3 Hybrid/Mixed Forrulaticn by
i Hu-kashizu Pringiple

.....

P

| omtdete @ yleves T .
{ v (29) In using the Hu-Washizu principle to solve the ‘
fand the resultirg element stiffness matrix is the same . above boundary value problem the following functional
as £q, (19). The motivation by Tong is that when the should be maintained station4ry, ;?
P matrix in Eq. (5) are not coupled, the inversion of 1 T T f o
the flexibility matrix ¥ can be simnlified 78, ror Thw " 6 (zeCe-ge+a(Dulav g
ﬁ_'examp1e. in the case of 3-D solid, with ¢ = {0, o, 0, R T (25)
o Oy Oy2 C i+ if the exsansion P2 for all stress Ty - u-u . ?&
‘components are of identical form then the Hematrix \ 4 _ ) 7 . ;;
'Eq. (9) will take tre form - A - In 1973; Wolf’ used the Hu-Washizu principle for P
{ . _ finite element formulations, but the resulting method i:
: 8119 cees 3162 . has not been used widely. L.M. Tang and his %%
' H e . . . (21) colleagues1° at the Dalfan Institute of Technology i
; S. e $ * ; have inf{tiated the so-called quasi-conforming elements 5&
{ 168 662 v
' or string-net elements for the construction of element o
‘where S 1s the elastic compliance matrix and stiffness matrices and have discussed the con??ction ;f
i = of their method with the Hu-Washizu principle '. An ?ﬁ
: ¢ =7 51721 dv ' (22) interpretation of their method is that in applying :
' \ ' the Hu-Washizu principle each stress componant and
! The inversion of H then becomes simply : ¢orresponding strain tomponent are expressed in terms
: ¢ ¢ - : of the same polynomial expansion, and the rasulting 3
a. Ny e Cgv (23); matrix to be inverted then becomes one with only ¢
- : e : - o ~diagonal submatrices. This approach can acain be -
: Cig? cssg ‘ combined with the use of additiona) internal displace- E
* . i . ment parameters to enforce the stress equilibrium 3
where ¢ = §-1 and y » Q.l (24 i - conditions, Aqain, using the 3-D problem as an 3
-+ - example, {n the finite element implementation, let -
Although in using uncoupled stresses the size of cePa o . ‘ (26) i
iH 1s increased and the inversion of another matrix must = . ' . B
fge performed when Eq. (19) 1s used to derive the g=P8 (27) ¥
“element stiffness matrix, there could be considerable with {identical P for stresses and strains but the §
savings in computation when the ofders of Y are much expansions for different components may be entirely ;
-smaIler than that of the H matrix of a coup1ed stress tnsependent. With element displacements again ;

A N S dhat ‘h' *fﬂ’"nﬂ*e ‘ evoressed by Eq. {13), ecuation (25) then becomes :




| QF FOOR QUALITY
wrzac et figdhy )
where ) s ! PTC P gy (#9)
E.{ETB dv s ,}h, 0 )
(30)

o
= o4
o

and G end R are given in Eqs, (10) and (16).

i The stationary condition of Ly with respect to

Baend 5 then leads to three sets of equations, which
-can be used to obtain a in terms of 9. The resulting

,element stiffness matrix is

- .

1%

-

REWR)T T g (31)

t

]
TRy
|

“where We ﬂ"g E"l (32)

As shown in Eq. (30) ﬁ matrix consists of only diagonal
submatrices. Thus, its inversion always involves only
.the inversion of ﬁi even if the materia) property f{s
anisotropic,

For general quadrilateral and hexahedrs) elements
1t 1s more convenient to express strains, stresses and
displacements in the isonarametric ceordinates. In
that case, the Jacobian [J| appears in the area or
the volume integrals. here, however, the strain terms
can be expressed as

NigePa . (33)
and for propérly chosen E, the resclting submatrices

Ei may 211 secome diagonal matrices ane ﬁ vill also be
8 simple diagonal matrix. )

& Chofce of Assumed Stress Terms
for Hexahedral Elements

The guidelines for the assumed st-esses in the'

hybrid/mixed finite element formulations are to include
'ecgquate terms to suppress all possible kinematic
deformation modes and to avoid excessive stress terms
"in order to prevent the forming of an overly rigid
element. For hexahedral elements of general distorted
_geometry kinematic deformation modes can, in general, .
be‘suppressed when the number of stress terms is equal
“or larger than the total number of degrees of freedom
minus six. However, for regular brick-shaped elements
the possible displacement modes are of simple shapes,
not all assumed stress terms are useful for suppresse
ing the kinematic modes. Thus, their selections become
& very imoortant steﬂ in the finite element formula-
tion.

4~

New consider a 20-node brick element viith the x,
y and 2 axes coincide with the axes of symmetry as
skown in Figure 1, The element displacements can be
Z

; Figure 1 20-Node Brick Element
expressed in terms of the nodal displacements Uy vy

and w, (1 =1 to 20) as

. Ui

20
u..& voryse [ N‘f (X’Yozv) V1 (34)
i1 v

One can conclude that the shape functions Ni(x,y.z)
can be represented by 20 independent and simple
polynomial terms as follows:

Constant, x, Y, 2 ng .‘/2» z-zo Xys yz, xz, xzy.

)0'2. JZJ. yzzo XZL ueg X2, Xz)'zo uzz and Xyzz ,g

For a regular brick element, then, all possible element '
disnlecerents can be rerresented bv 60 independent
displacement modes. Here, the six rigid body displace-

ment modes correspord to zero strains, hence, can not E

be suppressed by any stresses and one only needs to g

consider the remaining 54 displacements.

- It is seen thet each displacement mode may i

correspond up to three non-zero strains. Let e be
one of these strains then, to suppress a particular
mode it {s necessary that a stress term o exists for
the stress component corresponding to € such that the
integral [ ocdV does not vanish. _Each stress term,
however, can be used to suppress only one individual

displacement mode. An ideal situation, thus, would be i;

to choose 54 assumed stress terms each of which {s
associated with one {ndfvidual displacement mode.

One of the possible chofces s shown in Table 1.
Here, in the various block spaces the polynomial
expansions for the six stress compodents and the
corresponding displacements to be suppressed are
indicated. There are 54 independent g-terms. 1In many
other blocks stress terms are introduced to maintain
the equilibrium conditions. They are not used to
suppress any of the 54 displacement modes.

It should be noted that some displacement terms
may each correspond to three strains and some strain

terms may be arrived from more than one displacement
mde, The not pociil4 de ¢has bnmn n® sha £A

T

2
L
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! Table 1 . ¢isplacement rodes may be suppressed by alternative
Stress Terms and Corresponding’Displacement Modes stress terms and there exist many other combinations of
to be Suppressed for 20-Hode Brick Element - B4 ctress terms that can suppress al) possible

kinematic modes,

i 9, a, a, ]J,y L Cox E Anothgr observation {s that the stress expansion
, 5] 52 33 "4 g ;6 18 complete only up to linear terms, hence, the element
i |eonst] usx ey Wiz URY VRY| vo R weylun2 Wy properties will he dependent on the reference oxas for
x By, | &g B1y ﬁ]aa 16 ﬁ,gz the asiumed strecses. Spilker ot al.'% has shown that
-821 vexy lwrxz |vex We Ry wex 2 hybrﬂd stress clement may behave excellently under
one coordinate system but wil) contain a kinematic
Y1 & b3 | b E‘GZ 8172 F20 deformation mode under another reference syst F
urxy .918 wyz  |[VRY waiy usyz ' yatem. or
—— Evo 1517 |15 Ty T 8 regular brick element, the reference axes should
u-gz veyz |-8yy |vex2 veze  |us2l obviously be the sxes of symmetry, For clements of
Y 2 By CI Fay general geometric shape it is sti1) required to choose
22 272 2 ? 2 2 local reference coordinate system in order to achieve
U'xzy VEXY"© | WEXY2 VR (wxy an ortimal element behavior. . .
¥z | Bog Ezg £332 :372 “42 » It is 2150 noted that there are alteri. tive
USXYZ (VEY©Z |WEY2T |umy©2 usy2 choices of the stress terms for maintaining the stress
X2 | a4 | bg | B3 fag f20 cuilibrium conditions. In Table 1 complete symmetric
u=x®z |vexyz lwexz® lvex?s | yexa? conditions are not maintained in this particular stress
530 535 -,27/2 k -534/2 selection, 1f such conditions'are to be maintained
x4 2 ard 811 the stress equilibrium equations are to be
i - very fo 2 1-£q0/2 —— ~£20/2 satisfied the number of independent stress terms will
B BV g :33 “Egpl2 | ~Egalt necessarily exceed 54. Alternatively, some stress
| X M2 nEanl2) ks S equilibrium conditions can be relaxed in order to
| 22 8262 E312 | Eagl/2 [ ~Eplt maintain complete syrmetric conditions. It can be
! ufxz nyz i “Papf2 | 285002 seen that in Table 1 i we exclude 811 the unaerlined
i kv n4g ;502 5 » terms which are introduced to maintain the equilibrium
; usx yzivexy 2l wexyv2 corgitions of a1l cubic stress terms, the symretry
| X)Z o 1386 | 2 _ condition is satisfied. An example solution of a i
[ — ngyzz sphere with & hole at its center subjected to varying i
7 temperatures along the radial direction shows, in fact.f
XY S“? “3Bcp ’jﬁli? that by using fewer ctress terms in such a way the !
' W'Xdya results are better than those obtained by using al) ?
| yzz B3 3953 . terms in Table 1, and even better than that by the ?
! uexyz? — conventional displacement method. 1t has been found, :,
however, that the equilibrium conditions for the Yower‘
ifggfe :355} order stress terms should be maintained in order to :r
- achieve an optimal element behavior. Also excellent
£, tfégi? :Eféf " results can be obtained by using an element with 57
vexy?2 £-terms obtained by replacing ;he 852. 653 and Esq 2
1 terms 12 Table 1 byaox-' 852;’ + Bgax2", oy ® BgaX
vexlyz + Bpey2®, o, * Bssy 24 es7x 2 without any shear
stress terms for maintatining equilibrium conditions.
Details of these solutions are given in Ref. 13.

For brick elements with 8, 12 and 16 nodes the
independent displacement modes can all be identified
from the 60 modes of the 20-nude element. Thus, the
¢orresponding stress terms can also be identified

By irmediately from Table 1. For example, the indepens g
wmzz, dent displacements for the 8-node brick element are
. UsV W = constant, X,y,2,xy,¥2,X2,xy2
&nd the corresponding assumed stresses are
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o, * g] + ezy + ﬁ3z + £4yz
ay - 85 + Box t 372 + Egx2

g m Byt Bigx t By b By 5
Oy * Bra * Byg?
Oz * Prs * Fyg
0%z * Bi7 * gy

In this case the three quadratic stross terms are
necessary in order to suppress the displacement modes
Uy vy W xyz, It 15 2130 noted that even the lincar
terms arc not complete here. In fact, 1f the linear
terms are complete with altogether 24 8's, the resulte
ing element will be almost as rigid as an assumed- '
displacement element based on trilinear shape functions.
In using the present methods by T for isctropic
materials, the stress expansion of the three normal
stress components must be {dentical while the shear-
ing stress components msy be kept the same as those
in Table 1. For & formulation similar to the §7-8
element described earlier, the size of the Hematrix
is 75 x 75 and the evaluation of an element Stiffness
matrix will require the inversion of one 18 x 18
(BT§'1 B) matrix, one 17 x 17 ¢-matrix and three & x 8
matrices instead of the fnversion of a 57 x 57 flexie
bility matrix. When the formulation is by Ty 3nd the
stress terms are the same as that by Tpe the result
will be identical to that by Tpe However, in this
case the stress expansions for different normal
tomponents ‘heed not be.the same and one may use fewer

stress terms than that by TRe
]
L3
5 Semiloof Elements for Plates and Shells

(35)

[

. !
For thin plates and shells, lrons has pointed .
out the advantage of using semiloof elementsz. for
which the derivatives of lateral displacement w are
not maintained compatible at the corners of the
elements whjle normal derivatives ¥ n at some points
2long the interelement boundary are kept the same,
By using the assumed displacement approach the deriva-

© tion of a semiloof element {s very complicated.

However, it is rather straightforward using the assumed
stress hybrid method12. Within a semiLoof element the
derivatives of boundary displacement w are not contin-
uous et the corner nodes but the interelement compate
ibf1ity conditions are completely satisfied.
Triangular plate elements with 12 D.0.F. as shown
in Figure 2, have been derived using 9, 13 and 17
independent moment terins. The Loof-nodes are located
8t 1/3 points. The 9 moment terms are the complete
Tinear terms, hence, resulting element by the hybrid
method is identical to the equilibrium element by

i

'FraeHs de Veuheke ™", 1t ie¢ nnarncearmily yore Floyvible

‘both variational principles do not contain the geometry
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Fig. 2 Center Deflection of Clamped Square Plate bnéert?

, a Concentrated Load

.as shown by the solutions (Fig. 2) of .the center defleclg
“tion of a clamped square plate under a concentrated

load. The use of four additiona) moment terms improves ﬁ

the accuracy of the solution. The addition of eight
moment terms, however, makes the element too rigid.
‘Two 16-dof semiloof elements of rectangular shape have
also been formulated using 13- and 17-¢ terms. These
elements are necessarily more flexible than the corres-
ponding triangular elements as shown by the results

given in Figure 2, 2 ;

For shell elements the equilibrium equations will
always couple the membrane stresses and the moment

Stresses. However, for isotropic materials, they are £

not coupled in the stress-strain relations. Thus, in

this case, by using the .new approach by Tg the Hematrix fil

can always be partitioned into four sub-matrices along
the diagonal. 1In the new approach by L of course,

different components {n the membrane and moment stresses £

are always decoupled. Another added advantage of the
new formulations is that the resulting H matrices by

of the shell, making the implementation simplified.
Both triangular and quadrilateral shallow $hel}
elements have been constructed for semiloof boundary
nodes by the present methods based on both the
Hellinger-Refssner principle and the Hu-Washizu princi-

plels‘ The assumed stress terms which for the two

te
(™
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@-cee  triangular ¢lement
(Nged?) "
Cheve rectangylar element
. ‘hB'SS) - °v‘
v ' e gnalytical solution
. (Fligge)

Fig. 3 Stress Distribution of a Pinched Cylinder by
Semiloof Elements *

element, consist of 37 independent &'s initially, and
12 constraint equatic  for 3 are then introduced
reducing the number of :.dependent B's to 25. For
the 32-dof quadrilateral shell element 55 independent
B's were used initially and 22 constraint equations
for B are then introduced reducing the number nf
{ndependent 8's to 33.

A problem of the pinched cylindrical shell with
freely supported ends was analyzed using 4 x 4 mesh.
It was found that the displacements and stresses
obtained by these two variational methods differ so
little the the resulting plots of the membrane and
moment distributions (Fig. 3) can not be distinguished
from one to the other. An analyses of the computing
efforts for these two approaches indicates that the
formulation by the Hu-Washizu principle has an edge
over . that by the Hellinger-Reissner principle.

-—

‘Bdth methods are simpler to formulate than the original

hyorid stress method for which the membrane and moment

stress terms are coupled by the equilibrium equations.

.

¢ Conclusions

New applications of the Hellinger-Reissner

PO

«7

+
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p}iuc1p1e and the Hu-kashizy pringiple to finite
element formylations have led to a more flexible and
"most efficient finite element method by the assumed
stresses. The possibility of using natural coordinates
and the relaxation of some equilibrium conditions are
the flexibility of the new hybrid/mixed stress method,
The decoupling of the flexibility matrix H leads to a
saving fn computing time. A systematic procadure for
the choice of stress terms in certain hybrid/mixed

i finite clemonts has been established based on the

} requirement for suppressing the kinematie deformation
modes, Numerical results indicate the advantase of

%of maintaining the equilibrium of the lower order

l'stress terms while relaxing that o/ the higher order

i terms, Hybrid/Mized formulations are suitable to

! plates and shells using semiloof elements,
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